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Preface

A basic function of civil and construction engineering is to provide and maintain 
the infrastructure needs of society. The infrastructure includes buildings, water 
treatment and distribution systems, waste water removal and processing, dams, and 
highway and airport bridges and pavements. Although some civil and construction 
engineers are involved in the planning process, most are concerned with the design, 
construction, and maintenance of facilities. The common denominator among these 
responsibilities is the need to understand the behavior and performance of materials. 
Although not all civil and construction engineers need to be material specialists, a 
basic understanding of the material selection process, and the behavior of materials, 
is a fundamental requirement for all civil and construction engineers performing 
design, construction, and maintenance.

Material requirements in civil engineering and construction facilities are differ-
ent from material requirements in other engineering disciplines. Frequently, civil 
engineering structures require tons of materials with relatively low replications of 
specific designs. Generally, the materials used in civil engineering have relatively 
low unit costs. In many cases, civil engineering structures are formed or fabricated 
in the field under adverse conditions. Finally, many civil engineering structures are 
directly exposed to detrimental effects of the environment.

The subject of engineering materials has advanced greatly in the past few decades. 
As a result, many of the conventional materials have either been replaced by more 
efficient materials or modified to improve their performance. Civil and construction 
engineers have to be aware of these advances and be able to select the most cost-
effective material or use the appropriate modifier for the specific application at hand.

This text is organized into three parts: (1) introduction to materials engineer-
ing, (2) characteristics of materials used in civil and construction engineering, and 
(3) laboratory methods for the evaluation of materials.

The introduction to materials engineering includes information on the basic 
mechanistic properties of materials, environmental influences, and basic material 
classes. In addition, one of the responsibilities of civil and construction engineers 
is the inspection and quality control of materials in the construction process. This 
requires an understanding of material variability and testing procedures. The atomic 
structure of materials is covered in order to provide basic understanding of material 
behavior and to relate the molecular structure to the engineering response.

The second section, which represents a large portion of the book, presents the 
characteristics of the primary material types used in civil and construction engineer-
ing: steel, aluminum, concrete, masonry, asphalt, wood, and composites. Since the 
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16	 Preface

discussion of concrete and asphalt materials requires a basic knowledge of aggre-
gates, there is a chapter on aggregates. Moreover, since composites are gaining wide 
acceptance among engineers and are replacing many of the conventional materials, 
there is a chapter introducing composites.

The discussion of each type of material includes information on the following:

■■ Basic structure of the materials
■■ Material production process
■■ Mechanistic behavior of the material and other properties
■■ Environmental influences
■■ Construction considerations
■■ Special topics related to the material discussed in each chapter

Finally, each chapter includes an overview of various test procedures to intro-
duce the test methods used with each material. However, the detailed description 
of the test procedures is left to the appropriate standards organizations such as the 
American Society for Testing and Materials (ASTM) and the American Association of 
State Highway and Transportation Officials (AASHTO). These ASTM and AASHTO 
standards are usually available in college libraries, and students are encouraged to 
use them. Also, there are sample problems in most chapters, as well as selected 
questions and problems at the end of each chapter. Answering these questions and 
problems will lead to a better understanding of the subject matter.

There are volumes of information available for each of these materials. It is not 
possible, or desirable, to cover these materials exhaustively in an introductory single 
text. Instead, this book limits the information to an introductory level, concentrates 
on current practices, and extracts information that is relevant to the general educa-
tion of civil and construction engineers.

The content of the book is intended to be covered in one academic semester, 
although quarter system courses can definitely use it. The instructor of the course 
can also change the emphasis of some topics to match the specific curriculum of the 
department. Furthermore, since the course usually includes a laboratory portion, a 
number of laboratory test methods are described. The number of laboratory tests in 
the book is more than what is needed in a typical semester in order to provide more 
flexibility to the instructor to use the available equipment. Laboratory tests should 
be coordinated with the topics covered in the lectures so that the students get the 
most benefit from the laboratory experience.

The first edition of this textbook served the needs of many universities and col-
leges. Therefore, the second edition was more of a refinement and updating of the 
book, with some notable additions. Several edits were made to the steel chapter to 
improve the description of heat treatments, phase diagram, and the heat-treating 
effects of welding. Also, a section on stainless steel was added, and current infor-
mation on the structural uses of steel was provided. The cement and concrete chap-
ters have been augmented with sections on hydration-control admixtures, recycled 
wash water, silica fume, self-consolidating concrete, and flowable fill. When the 
first edition was published, the Superpave mix design method was just being intro-
duced to the industry. Now Superpave is a well-established method that has been 
field tested and revised to better meet the needs of the paving community. This 
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development required a complete revision to the asphalt chapter to accommodate 
the current methods and procedures for both Performance Grading of asphalt bind-
ers and the Superpave mix design method. The chapter on wood was revised to 
provide information on recent manufactured wood products that became available 
in the past several years. Also, since fiber-reinforced polymer composites have been 
more commonly used in retrofitting old and partially damaged structures, several 
examples were added in the chapter on composites. In the laboratory manual, an 
experiment on dry-rodded unit weight of aggregate that is used in portland cement 
concrete (PCC) proportioning was added, and the experiment on creep of asphalt 
concrete was deleted for lack of use.

What’s New in This Edition

The primary focus of the updates presented in this edition was on the sustainability 
of materials used in civil and construction engineering. The information on sustain-
ability in Chapter 1 was updated and expanded to include recent information on 
sustainability. In addition, a section was added to Chapters 3 through 11 describing 
the sustainability considerations of each material. The problem set for each chapter 
was updated and increased to provide some fresh Exercises and to cover other topics 
discussed in the chapter. References were updated and increased in all chapters to 
provide students with additional reading on current issues related to different mate-
rials. Many figures were added and others were updated throughout the book to pro-
vide visual illustrations to students. Other specific updates to the chapters include:

■■ Chapter 1 now includes a more detailed section on viscoelastic material behav-
ior and a new sample problem.

■■ Chapter 3 was updated with recent information about the production of steel.
■■ A sample problem was added to Chapter 5 about the water absorbed by aggre-

gate in order to highlight the fact that absorbed water is not used to hydrate the 
cement or improve the workability of plastic concrete.

■■ Two new sample problems were added to Chapter 6 on the acceptable criteria 
of mixing water and to clarify the effect of water reducer on the properties of 
concrete.

■■ Chapter 7 was augmented with a discussion of concrete mixing water and a 
new sample problem. A section on pervious concrete was added to reflect the 
current practice on some parking lots and pedestrian walkways.

■■ Chapter 9 was updated with reference to the multiple stress creep recovery test, 
and the information about the immersion compression test was replaced with 
the tensile strength ratio method to reflect current practices. The selection of 
the binder was refined to incorporate the effect of load and speed. The section 
on the diameteral tensile resilient modulus was removed for lack of use. The 
sample problem on the diameteral tensile resilient modulus was also removed 
and replaced with a sample problem on the freeze-thaw test and the tensile 
strength ratio.
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■■ Chapter 10 was updated to include more information about wood deteriora-
tion and preservation. The first two sample problems were edited to provide 
more accurate solutions since the shrinkage values used in wood are related to 
the green dimensions at or above the fiber saturation point (FSP), not the dry 
dimensions. The third sample problem was expanded to demonstrate how to 
determine the modulus of elasticity using the third-point bending test.

■■ Chapter 11 was updated to reflect information about the effective length of fib-
ers and the ductility of fiber-reinforced polymers (FRP). The discussion was 
expanded with several new figures to incorporate fibers, fabrics, laminates, and 
composites used in civil engineering applications. The first sample problem 
was expanded to apply other concepts covered in the chapter.

■■ The laboratory manual in the appendix was updated to include two new exper-
iments on creep in polymers and the effect of fiber orientation on the elastic 
modulus of fiber reinforced composites. The experiment on the tensile proper-
ties of composites was updated. This would allow more options to the instruc-
tor to choose from in assigning lab experiments to students.
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Materials engineers are responsible for the selection, specification, and quality control 
of materials to be used in a job. These materials must meet certain classes of criteria or 
materials properties (Ashby and Jones, 2011). These classes of criteria include

■■ economic factors
■■ mechanical properties
■■ nonmechanical properties
■■ production/construction considerations
■■ aesthetic properties

In addition to this traditional list of criteria, civil engineers must be concerned with 
environmental quality. In 1997, the ASCE Code of Ethics was modified to include 
“sustainable development” as an ethics issue. Sustainable development basically 
recognizes the fact that our designs should be sensitive to the ability of future gen-
erations to meet their needs. There is a strong tie between the materials selected for 
design and sustainable development.

When engineers select the material for a specific application, they must consider 
the various criteria and make compromises. Both the client and the purpose of the 
facility or structure dictate, to a certain extent, the emphasis that will be placed on the 
different criteria.

Civil and construction engineers must be familiar with materials used in the con-
struction of a wide range of structures. Materials most frequently used include steel, 
aggregate, concrete, masonry, asphalt, and wood. Materials used to a lesser extent 
include aluminum, glass, plastics, and fiber-reinforced composites. Geotechnical 
engineers make a reasonable case for including soil as the most widely used engineer-
ing material, since it provides the basic support for all civil engineering structures. 
However, the properties of soils will not be discussed in this text because soil proper-
ties are generally the topic of a separate course in civil and construction engineering 
curriculums.

Recent advances in the technology of civil engineering materials have resulted 
in the development of better quality, more economical, and safer materials. These 
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22	 Chapter 1    Materials Engineering Concepts

materials are commonly referred to as high-performance materials. Because more 
is known about the molecular structure of materials and because of the continuous 
research efforts by scientists and engineers, new materials such as polymers, adhe-
sives, composites, geotextiles, coatings, cold-formed metals, and various synthetic 
products are competing with traditional civil engineering materials. In addition, 
improvements have been made to existing materials by changing their molecular 
structures or including additives to improve quality, economy, and performance. 
For example, superplasticizers have made a breakthrough in the concrete indus-
try, allowing the production of much stronger concrete. Joints made of elastomeric 
materials have improved the safety of high-rise structures in earthquake-active areas. 
Lightweight synthetic aggregates have decreased the weight of concrete structures, 
allowing small cross-sectional areas of components. Polymers have been mixed with 
asphalt, allowing pavements to last longer under the effect of vehicle loads and envi-
ronmental conditions.

The field of fiber composite materials has developed rapidly in the past 30 years. 
Many recent civil engineering projects have used fiber-reinforced polymer compos-
ites. These advanced composites compete with traditional materials due to their higher 
strength-to-weight ratio and their ability to overcome such shortcomings as corrosion. 
For example, fiber-reinforced concrete has much greater toughness than conventional 
portland cement concrete. Composites can replace reinforcing steel in concrete struc-
tures. In fact, composites have allowed the construction of structures that could not 
have been built in the past.

The nature and behavior of civil engineering materials are as complicated as those 
of materials used in any other field of engineering. Due to the high quantity of materi-
als used in civil engineering projects, the civil engineer frequently works with locally 
available materials that are not as highly refined as the materials used in other engi-
neering fields. As a result, civil engineering materials frequently have highly variable 
properties and characteristics.

This chapter reviews the manner in which the properties of materials affect their 
selection and performance in civil engineering applications. In addition, this chapter 
reviews some basic definitions and concepts of engineering mechanics required for 
understanding material behavior. The variable nature of material properties is also dis-
cussed so that the engineer will understand the concepts of precision and accuracy, 
sampling, quality assurance, and quality control. Finally, instruments used for measur-
ing material response are described.

	 1.1	E conomic Factors
The economics of the material selection process are affected by much more than 
just the cost of the material. Factors that should be considered in the selection of the 
material include

■■ availability and cost of raw materials
■■ manufacturing costs
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■■ transportation
■■ placing
■■ maintenance

The materials used for civil engineering structures have changed over time. 
Early structures were constructed of stone and wood. These materials were in ready 
supply and could be cut and shaped with available tools. Later, cast iron was used, 
because mills were capable of crudely refining iron ore. As the industrial revolu-
tion took hold, quality steel could be produced in the quantities required for large 
structures. In addition, portland cement, developed in the mid-1800s, provided civil 
engineers with a durable inexpensive material with broad applications.

Due to the efficient transportation system in the United States, availability is not 
as much of an issue as it once was in the selection of a material. However, transporta-
tion can significantly add to the cost of the materials at the job site. For example, in 
many locations in the United States, quality aggregates for concrete and asphalt are 
in short supply. The closest aggregate source to Houston, Texas, is 150 km from the 
city. This haul distance approximately doubles the cost of the aggregates in the city, 
and hence puts concrete at a disadvantage compared with steel.

The type of material selected for a job can greatly affect the ease of construc-
tion and the construction costs and time. For example, the structural members of 
a steel-frame building can be fabricated in a shop, transported to the job site, lifted 
into place with a crane, and bolted or welded together. In contrast, for a reinforced 
concrete building, the forms must be built; reinforcing steel placed; concrete mixed, 
placed, and allowed to cure; and the forms removed. Constructing the concrete frame 
building can be more complicated and time consuming than constructing steel struc-
tures. To overcome this shortcoming, precast concrete units commonly have been 
used, especially for bridge construction.

All materials deteriorate over time and with use. This deterioration affects both 
the maintenance cost and the useful life of the structure. The rate of deterioration 
varies among materials. Thus, in analyzing the economic selection of a material, the 
life cycle cost should be evaluated in addition to the initial costs of the structure.

	 1.2	 Mechanical Properties
The mechanical behavior of materials is the response of the material to external 
loads. All materials deform in response to loads; however, the specific response of a 
material depends on its properties, the magnitude and type of load, and the geome-
try of the element. Whether the material “fails” under the load conditions depends 
on the failure criterion. Catastrophic failure of a structural member, resulting in the 
collapse of the structure, is an obvious material failure. However, in some cases, the 
failure is more subtle, but with equally severe consequences. For example, pavement 
may fail due to excessive roughness at the surface, even though the stress levels are 
well within the capabilities of the material. A building may have to be closed due 
to excessive vibrations by wind or other live loads, although it could be structurally 
sound. These are examples of functional failures.
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1.2.1	■	Loading Conditions
One of the considerations in the design of a project is the type of loading that the 
structure will be subjected to during its design life. The two basic types of loads are 
static and dynamic. Each type affects the material differently, and frequently the 
interactions between the load types are important. Civil engineers encounter both 
when designing a structure.

Static loading implies a sustained loading of the structure over a period of 
time. Generally, static loads are slowly applied such that no shock or vibration is 
generated in the structure. Once applied, the static load may remain in place or be 
removed slowly. Loads that remain in place for an extended period of time are called 
sustained (dead) loads. In civil engineering, much of the load the materials must 
carry is due to the weight of the structure and equipment in the structure.

Loads that generate a shock or vibration in the structure are dynamic loads. 
Dynamic loads can be classified as periodic, random, or transient, as shown in 
Figure 1.1 (Richart et al., 1970). A periodic load, such as a harmonic or sinusoidal 
load, repeats itself with time. For example, rotating equipment in a building can 
produce a vibratory load. In a random load, the load pattern never repeats, such as 
that produced by earthquakes. Transient load, on the other hand, is an impulse load 
that is applied over a short time interval, after which the vibrations decay until the 

F i g u r e  1 . 1   Types of dynamic 
loads: (a) periodic, (b) random, and 
(c) transient.

Fo
rc

e

Time

(b)

(a)

(c)

Fo
rc

e

Time

Fo
rc

e

Time

M01_MAML5440_04_GE_C01.indd   24 5/23/17   2:11 PM



	 Section 1.2    Mechanical Properties	 25

system returns to a rest condition. For example, bridges must be designed to with-
stand the transient loads of trucks.

1.2.2	■	Stress–Strain Relations
Materials deform in response to loads or forces. In 1678, Robert Hooke published 
the first findings that documented a linear relationship between the amount of force 
applied to a member and its deformation. The amount of deformation is proportional 
to the properties of the material and its dimensions. The effect of the dimensions 
can be normalized. Dividing the force by the cross-sectional area of the specimen 
normalizes the effect of the loaded area. The force per unit area is defined as the 
stress s in the specimen (i.e., s = force/area). Dividing the deformation by the orig-
inal length is defined as strain ε of the specimen (i.e., e = change in length/original 
length). Much useful information about the material can be determined by plotting 
the stress–strain diagram.

Figure 1.2 shows typical uniaxial tensile or compressive stress–strain curves for 
several engineering materials. Figure 1.2(a) shows a linear stress–strain relationship 
up to the point where the material fails. Glass and chalk are typical of materials 
exhibiting this tensile behavior. Figure 1.2(b) shows the behavior of steel in tension. 
Here, a linear relationship is obtained up to a certain point (proportional limit), after 
which the material deforms without much increase in stress. On the other hand, alu-
minum alloys in tension exhibit a linear stress–strain relationship up to the propor-
tional limit, after which a nonlinear relation follows, as illustrated in Figure 1.2(c). 
Figure 1.2(d) shows a nonlinear relation throughout the whole range. Concrete and 
other materials exhibit this relationship, although the first portion of the curve for 
concrete is very close to being linear. Soft rubber in tension differs from most materi-
als in such a way that it shows an almost linear stress–strain relationship followed 
by a reverse curve, as shown in Figure 1.2(e).

1.2.3	■	Elastic Behavior
If a material exhibits true elastic behavior, it must have an instantaneous response 
(deformation) to load, and the material must return to its original shape when the 
load is removed. Many materials, including most metals, exhibit elastic behavior, at 

F i g u r e  1 . 2   Typical uniaxial stress–strain diagrams for some engineering materials: 
(a) glass and chalk, (b) steel, (c) aluminum alloys, (d) concrete, and (e) soft rubber.

S
tr

es
s

Strain

(e)

S
tr

es
s

Strain

(d)

S
tr

es
s

Strain

(c)

S
tr

es
s

Strain

(b)

S
tr

es
s

Strain

(a)

M01_MAML5440_04_GE_C01.indd   25 5/23/17   2:11 PM



26	 Chapter 1    Materials Engineering Concepts

least at low stress levels. As will be discussed in Chapter 2, elastic deformation does 
not change the arrangement of atoms within the material, but rather it stretches the 
bonds between atoms. When the load is removed, the atomic bonds return to their 
original position.

Young observed that different elastic materials have different proportional con-
stants between stress and strain. For a homogeneous, isotropic, and linear elastic mate-
rial, the proportional constant between normal stress and normal strain of an axially 
loaded member is the modulus of elasticity or Young’s modulus, E, and is equal to

E =
s

e
	   (1.1)

where s is the normal stress and ε is the normal strain.
In the axial tension test, as the material is elongated, there is a reduction of the 

cross section in the lateral direction. In the axial compression test, the opposite is 
true. The ratio of the lateral strain, εl, to the axial strain, εa, is Poisson’s ratio,

v =
-el

ea
	   (1.2)

Since the axial and lateral strains will always have different signs, the negative 
sign is used in Equation 1.2 to make the ratio positive. Poisson’s ratio has a theoreti-
cal range of 0.0 to 0.5, where 0.0 is for a compressible material in which the axial 
and lateral directions are not affected by each other. The 0.5 value is for a material 
that does not change its volume when the load is applied. Most solids have Poisson’s 
ratios between 0.10 and 0.45.

Although Young’s modulus and Poisson’s ratio were defined for the uniaxial 
stress condition, they are important when describing the three-dimensional stress–
strain relationships, as well. If a homogeneous, isotropic cubical element with linear 
elastic response is subjected to normal stresses sx, sy, and sz in the three orthogonal 
directions (as shown in Figure 1.3), the normal strains εx, εy, and εz can be computed 
by the generalized Hooke’s law,

 ex =
sx - v(sy + sz)

E

 ey =
sy - v(sz + sx)

E

 ez =
sz - v(sx + sy)

E
	   (1.3)

F i g u r e  1 . 3   Normal stresses applied on a cubical element.
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Linearity and elasticity should not be confused. A linear material’s stress–strain 
relationship follows a straight line. An elastic material returns to its original shape 
when the load is removed and reacts instantaneously to changes in load. For exam-
ple, Figure 1.4(a) represents a linear elastic behavior, while Figure 1.4(b) represents 
a nonlinear elastic behavior.

For materials that do not display any linear behavior, such as concrete and soils, 
determining a Young’s modulus or elastic modulus can be problematical. There are 
several options for arbitrarily defining the modulus for these materials. Figure 1.5 
shows four options: the initial tangent, tangent, secant, and chord moduli. The ini-
tial tangent modulus is the slope of the tangent of the stress–strain curve at the ori-
gin. The tangent modulus is the slope of the tangent at a point on the stress–strain 
curve. The secant modulus is the slope of a chord drawn between the origin and 
an arbitrary point on the stress–strain curve. The chord modulus is the slope of a 
chord drawn between two points on the stress–strain curve. The selection of which 
modulus to use for a nonlinear material depends on the stress or strain level at which 
the material typically is used. Also, when determining the tangent, secant, or chord 
modulus, the stress or strain levels must be defined.

Table 1.1 shows typical modulus and Poisson’s ratio values for some materials at 
room temperature. Note that some materials have a range of modulus values rather 

Sample Problem 1.1

A cube made of an alloy with dimensions of 50 mm * 50 mm * 50 mm is placed 
into a pressure chamber and subjected to a pressure of 90 MPa. If the modulus of 
elasticity of the alloy is 100 GPa and Poisson’s ratio is 0.28, what will be the length 
of each side of the cube, assuming that the material remains within the elastic 
region?

Solution

 Ex = [Sx - n(Sy + Sz)]/E = [-90 - 0.28 * (-90 - 90)]/100000 

 = -0.000396 m/m  

 Ey = Ez = -0.000396 m/m 

 �x = �y = �z = -0.000396 * 50 = -0.0198 mm 

 Lnew = 50 - 0.0198 = 49.9802 mm

F i g u r e  1 . 4   Elastic behavior: (a) linear 
and (b) nonlinear.
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than a distinct value. Several factors affect the modulus, such as curing level and 
proportions of components of concrete or the direction of loading relative to the 
grain of wood.

1.2.4	■	Elastoplastic Behavior
For some materials, as the stress applied on the specimen is increased, the strain 
will proportionally increase up to a point; after this point, the strain will increase 
with little additional stress. In this case, the material exhibits linear elastic behavior 

F i g u r e  1 . 5   Methods for approximating modulus.
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Material Modulus GPa Poisson’s Ratio

Aluminum 69–75 0.33

Brick 10–17 0.23–0.40

Cast iron 75–169 0.17

Concrete 14–40 0.11–0.21

Copper 110 0.35

Epoxy 3–140 0.35–0.43

Glass 62–70 0.25

Limestone 58 0.2–0.3

Rubber (soft) 0.001–0.014 0.49

Steel 200 0.27

Tungsten 407 0.28

Wood 6–15 0.29–0.45

T a b l e  1 . 1   Typical Modulus and Poisson’s Ratio Values (Room Temperature)
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followed by plastic response. The stress level at which the behavior changes from 
elastic to plastic is the elastic limit. When the load is removed from the specimen, 
some of the deformation will be recovered and some of the deformation will remain 
as seen in Figure 1.6(a). As discussed in Chapter 2, plastic behavior indicates perma-
nent deformation of the specimen so that it does not return to its original shape when 
the load is removed. This indicates that when the load is applied, the atomic bonds 
stretch, creating an elastic response; then the atoms actually slip relative to each 
other. When the load is removed, the atomic slip does not recover; only the atomic 
stretch is recovered (Callister, 2006).

Several models are used to represent the behavior of materials that exhibit both 
elastic and plastic responses. Figure 1.6(b) shows a linear elastic–perfectly plastic 
response in which the material exhibits a linear elastic response upon loading, fol-
lowed by a completely plastic response. If such material is unloaded after it has 
plasticly deformed, it will rebound in a linear elastic manner and will follow a 
straight line parallel to the elastic portion, while some permanent deformation will 
remain. If the material is loaded again, it will have a linear elastic response followed 
by plastic response at the same level of stress at which the material was unloaded 
(Popov, 1968).

Figure 1.6(c) shows an elastoplastic response in which the first portion is an 
elastic response followed by a combined elastic and plastic response. If the load is 
removed after the plastic deformation, the stress–strain relationship will follow a 
straight line parallel to the elastic portion; consequently, some of the strain in the 
material will be removed, and the remainder of the strain will be permanent. Upon 
reloading, the material again behaves in a linear elastic manner up to the stress 
level that was attained in the previous stress cycle. After that point the material 
will follow the original stress–strain curve. Thus, the stress required to cause plas-
tic deformation actually increases. This process is called strain hardening or work 
hardening. Strain hardening is beneficial in some cases, since it allows more stress 
to be applied without permanent deformation. In the production of cold-formed 
steel framing members, the permanent deformation used in the production process 

F i g u r e  1 . 6   Stress–strain behavior of plastic materials: (a) example of loading 
and unloading, (b) elastic–perfectly plastic, and (c) elasto–plastic with strain hardening.
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can double the yield strength of the member relative to the original strength of 
the steel.

Some materials exhibit strain softening, in which plastic deformation causes 
weakening of the material. Portland cement concrete is a good example of such a 
material. In this case, plastic deformation causes microcracks at the interface between 
aggregate and cement paste.

Sample Problem 1.2

An elastoplastic material with strain hardening has the stress–strain relationship 
shown in Figure 1.6(c). The modulus of elasticity is 175 GPa, yield strength is 
480 MPa, and the slope of the strain-hardening portion of the stress–strain diagram 
is 20.7 GPa.

a.	 Calculate the strain that corresponds to a stress of 550 MPa.
b.	 If the 550-MPa stress is removed, calculate the permanent strain.

Solution

(a)  E = (480/175 : 103) + [(550 - 480)/20.7 * 103] = 0.0061 m/m

(b)  Epermanent = 0.0061 - [550/(175:103)] = 0.0061 - 0.0031

 = 0.0030 m/m

Materials that do not undergo plastic deformation prior to failure, such as con-
crete, are said to be brittle, whereas materials that display appreciable plastic defor-
mation, such as mild steel, are ductile. Generally, ductile materials are preferred 
for construction. When a brittle material fails, the structure can collapse in a cata-
strophic manner. On the other hand, overloading a ductile material will result in 
distortions of the structure, but the structure will not necessarily collapse. Thus, the 
ductile material provides the designer with a margin of safety.

Figure 1.7(a) demonstrates three concepts of the stress–strain behavior of elasto-
plastic materials. The lowest point shown on the diagram is the proportional limit, 
defined as the transition point between linear and nonlinear behavior. The second 
point is the elastic limit, which is the transition between elastic and plastic behavior. 
However, most materials do not display an abrupt change in behavior from elas-
tic to plastic. Rather, there is a gradual, almost imperceptible transition between 
the behaviors, making it difficult to locate an exact transition point (Polowski and 
Ripling, 2005). For this reason, arbitrary methods such as the offset and the exten-
sion methods, are used to identify the elastic limit, thereby defining the yield stress 
(yield strength). In the offset method, a specified offset is measured on the abscissa, 
and a line with a slope equal to the initial tangent modulus is drawn through this 
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